139 research outputs found

    Realistic multi-microphone data simulation for distant speech recognition

    Full text link
    The availability of realistic simulated corpora is of key importance for the future progress of distant speech recognition technology. The reliability, flexibility and low computational cost of a data simulation process may ultimately allow researchers to train, tune and test different techniques in a variety of acoustic scenarios, avoiding the laborious effort of directly recording real data from the targeted environment. In the last decade, several simulated corpora have been released to the research community, including the data-sets distributed in the context of projects and international challenges, such as CHiME and REVERB. These efforts were extremely useful to derive baselines and common evaluation frameworks for comparison purposes. At the same time, in many cases they highlighted the need of a better coherence between real and simulated conditions. In this paper, we examine this issue and we describe our approach to the generation of realistic corpora in a domestic context. Experimental validation, conducted in a multi-microphone scenario, shows that a comparable performance trend can be observed with both real and simulated data across different recognition frameworks, acoustic models, as well as multi-microphone processing techniques.Comment: Proc. of Interspeech 201

    Improving speech recognition by revising gated recurrent units

    Full text link
    Speech recognition is largely taking advantage of deep learning, showing that substantial benefits can be obtained by modern Recurrent Neural Networks (RNNs). The most popular RNNs are Long Short-Term Memory (LSTMs), which typically reach state-of-the-art performance in many tasks thanks to their ability to learn long-term dependencies and robustness to vanishing gradients. Nevertheless, LSTMs have a rather complex design with three multiplicative gates, that might impair their efficient implementation. An attempt to simplify LSTMs has recently led to Gated Recurrent Units (GRUs), which are based on just two multiplicative gates. This paper builds on these efforts by further revising GRUs and proposing a simplified architecture potentially more suitable for speech recognition. The contribution of this work is two-fold. First, we suggest to remove the reset gate in the GRU design, resulting in a more efficient single-gate architecture. Second, we propose to replace tanh with ReLU activations in the state update equations. Results show that, in our implementation, the revised architecture reduces the per-epoch training time with more than 30% and consistently improves recognition performance across different tasks, input features, and noisy conditions when compared to a standard GRU

    Light Gated Recurrent Units for Speech Recognition

    Full text link
    A field that has directly benefited from the recent advances in deep learning is Automatic Speech Recognition (ASR). Despite the great achievements of the past decades, however, a natural and robust human-machine speech interaction still appears to be out of reach, especially in challenging environments characterized by significant noise and reverberation. To improve robustness, modern speech recognizers often employ acoustic models based on Recurrent Neural Networks (RNNs), that are naturally able to exploit large time contexts and long-term speech modulations. It is thus of great interest to continue the study of proper techniques for improving the effectiveness of RNNs in processing speech signals. In this paper, we revise one of the most popular RNN models, namely Gated Recurrent Units (GRUs), and propose a simplified architecture that turned out to be very effective for ASR. The contribution of this work is two-fold: First, we analyze the role played by the reset gate, showing that a significant redundancy with the update gate occurs. As a result, we propose to remove the former from the GRU design, leading to a more efficient and compact single-gate model. Second, we propose to replace hyperbolic tangent with ReLU activations. This variation couples well with batch normalization and could help the model learn long-term dependencies without numerical issues. Results show that the proposed architecture, called Light GRU (Li-GRU), not only reduces the per-epoch training time by more than 30% over a standard GRU, but also consistently improves the recognition accuracy across different tasks, input features, noisy conditions, as well as across different ASR paradigms, ranging from standard DNN-HMM speech recognizers to end-to-end CTC models.Comment: Copyright 2018 IEE

    Sample Drop Detection for Distant-speech Recognition with Asynchronous Devices Distributed in Space

    Full text link
    In many applications of multi-microphone multi-device processing, the synchronization among different input channels can be affected by the lack of a common clock and isolated drops of samples. In this work, we address the issue of sample drop detection in the context of a conversational speech scenario, recorded by a set of microphones distributed in space. The goal is to design a neural-based model that given a short window in the time domain, detects whether one or more devices have been subjected to a sample drop event. The candidate time windows are selected from a set of large time intervals, possibly including a sample drop, and by using a preprocessing step. The latter is based on the application of normalized cross-correlation between signals acquired by different devices. The architecture of the neural network relies on a CNN-LSTM encoder, followed by multi-head attention. The experiments are conducted using both artificial and real data. Our proposed approach obtained F1 score of 88% on an evaluation set extracted from the CHiME-5 corpus. A comparable performance was found in a larger set of experiments conducted on a set of multi-channel artificial scenes.Comment: Submitted to ICASSP 202

    Multiple Source Localization Based on Acoustic Map De-Emphasis

    Get PDF
    This paper describes a novel approach for localization of multiple sources overlapping in time. The proposed algorithm relies on acoustic maps computed in multi-microphone settings, which are descriptions of the distribution of the acoustic activity in a monitored area. Through a proper processing of the acoustic maps, the positions of two or more simultaneously active acoustic sources can be estimated in a robust way. Experimental results obtained on real data collected for this specific task show the capabilities of the given method both with distributed microphone networks and with compact arrays
    • …
    corecore